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Abstract-The volume averaged equations for convective melting of particles in a packed bed are developed 
and a simple model is proposed. The model is solved numerically in one dimension to predict melting rates 
for a single substance and a system in which the liquid phase at elevated temperature enters a packed bed 
of the solid phase at the melting temperature. Materials having the thermophysical properties of water and 
aluminum are examined. For large Peclet number, the heat transfer is dominated by convection and the 
melting rate depends on the Stefan number, liquid to solid density ratio, fluid velocity and the initial solid 
fraction. The thickness of the melting zone increases with Peclet number and Prandtl number for systems 

dominated by convection. 

INTRODUCTION Continuity 

THE MELTING of solid particles in a liquid where a 
relative velocity between the liquid and fluid exists 
occurs in a large number of materials processing appli- 
cations as well as in the environment. For example, 
solid materials are often poured into molten materials 
in smelting operations, alloying operations, and vit- 
rification processes for both materials production and 
destruction of hazardous waste. In the environment 
an ice jam in a river is an example of melting of a 
packed bed of solids subject to a flowing liquid. In 
modelling severe nuclear accidents, engineers have 
also shown an interest in melting in packed beds. In 
some of these applications heavy solids are introduced 
to a molten liquid and melt as they settle. In others, 
the system behaves like a packed bed in that warmer 
liquid flows through a porous bed of solids at or near 
the melting temperature. The packed bed was selected 
for examination in this study because it offers the 
simpler alternative for examining some of the physics 
and is relatively easy to replicate experimentally. 

Energy 

solid : ~(Pshs)+v~(Pshsz~s) = -v*q, (3) 

liquid : ;hh,)+vw4r,) = -v*q,. (4) 

The appropriate interfacial conditions for con- 
servation of mass and energy can be written as 
follows : 

P,(U,--).n,_,+p,(v,--) ‘fz_, = 0 (5) 

n,_;R,VT,+n,_,.k,VT, 

In what follows the theory for melting in a packed 
bed will first be developed. This will involve starting 
with the liquid and solid phase energy equations and 
developing the two medium governing equations. The 
resulting model equations are solved numerically to 
demonstrate the effect of the key parameters on the 
melting process. Finally, the results are presented in a 
fashion that allows their use in engineering predictions 
for melting problems. 

= ~s(v,-~‘).n,_,h,+p,(u,-w).n,_,h, (6) 

where w represents the velocity of the solid-liquid 
interface and the sign convention for the velocities 
and unit vectors is shown in Fig. 1. 

The above system of equations could be solved 
numerically. However, the complexity of the geometry 
of the interface, A,_,, where the interfacial boundary 

THEORETICAL FORMULATION 

The theoretical formulation begins with the con- 
tinuity and energy equations for the solid and liquid 
phases. 

solid : apS 
z +v * (Ps%) = 0 (1) 

liquid : ah 
z +v* (p,q) = 0 (2) 

FIG. 1. The averaging volume and microscopic interface. 
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NOMENCLATURE 

A surface area per unit volume [m- ‘1 S dimensionless sink term in liquid phase 
c P specific heat at constant pressure energy equation defined in equation (41) 

[J kg-’ K-‘1 St Stefan number defined in equation (43) 
D* dimensionless diffusion coefficient T temperature [K] 

defined in equation (40) t time [s] 

DL longitudinal dispersion coefficient V volume [m ‘1 
[m’ s- ‘1 1’ velocity [m s- ‘1 

& particle diameter [m] U’ velocity of the solid-liquid interface 
h convective heat transfer coefficient [m s- ‘1 

[Wrn-*Km’ 1 X axial coordinate [ml. 
H dimensionless parameter defined in 

equation (36) Greek symbols 

k thermal conductivity [W m- ’ Km ‘1 ci thermal diffusivity [m’ s- ‘1 

L length scale defined as u,/v,,, [m] 0 dimensionless temperature defined in 

!+l melting rate per unit volume equation (32) 

[kgmm7 SC’] P density [kg m- ‘1 

M dimensionless melting rate defined in @ phase fraction 

equation (37) Y a local property. 

n unit vector (see Fig. 1) 
NU Nusselt number 

Subscripts 
d 

P% Peclet number based on L and liquid inlet 
based on particle diameter 

, 
velocity 

liquid phase 
m 

Pr Prandtl number 
melting conditions 

4 heat flux [W m-‘1 
0 based on liquid inlet conditions 

R ratio of liquid density to solid density 
S solid phase. 

Re Reynolds number based on particle Superscript 
diameter * indicates a dimensionless parameter. 

conditions must be applied is for most practical prob- 
lems sufficiently complex to render this alternative 
unfeasible. It is therefore desirable to simplify the 
problem by volume averaging over a region in the 
porous medium called a representative elementary 
volume or averaging volume as indicated in Fig. 1. In 
doing so liberal use will be made of the general trans- 
port theorem 

the divergence theorem 

and the theorem for the volume average of a diver- 
gence [l] 

(V-b) = V*(b)+; 
s 

bendA (9) 
A 

where the definition of a volume averaged quantity is 
written 

Volume averaging the continuity equations and mak- 

ing use of the general transport theorem and the diver- 
gence theorem results in 

pJv,--w).n,_,dA = 0 

p,(v,-~‘)*n, ,dA = 0 

where it has been assumed that both phases are incom- 
pressible. The integral terms in equations (11) and 
(12) when multiplied by the respective phase densities 
represent the mass flux across the interface and must 
be equal and opposite as expressed by the interfacial 
condition for mass (equation (5)). If we write 

1 
h=--_ 

V s 
p,(r,-w)*n,_,dA 

4, 

1 
= ~ 

V 
Ps(v-w).ns+tdA (13) 

and assume o> = 0 then the continuity equations 
become 



Convective melting of packed beds 831 

For the solid phase energy equation, again taking 
the solid phase velocity to be zero, volume averaging 
results in 

= V(k,VT,)+; 
s 

k,VT;n,_,dA. (16) 
A*-1 

Applying the averaging theorem a second time to 
the first term on the right hand side of equation (16) 
results in 

&,hJ+; 
s 

p,h,w~n,_,dA = V.[k,V(T,)] 
A,+ 

(17) 

Writing the enthalpy as the product of specific heat 
and temperature results in 

s k,VT;n,_,dA (18) 
L 

where the specific heat has been assumed to be 
constant. 

The energy equation for the liquid phase is identical 
to that for the solid except that the liquid velocity is 
non-zero. Hence, we must deal with the convective 
term which can be volume averaged to obtain 

P~c,, (TP,) .n,m,dA. (19) 

Further simplification of the nonlinear term can result 
if Gray’s decomposition [2] is applied by letting 

T, = (T,)‘+ T; and L+ = (~,)‘+a;. (20) 

The first term on the right hand side of equation (19) 
can then be written 

= ~,c,,[V.((T,)‘<c,)‘)t-V.(T;v:)l. t-21) 

The second term in equation (21) represents the 
hydrodynamic dispersion. The energy equation for 
the liquid phase can now be written 

= V~[~,k,V(T,)‘l+V *[$ I,. r,n,-;dA] 

+_: 
s 

k,VT,*n,_,dA. (22) 
&s 

The interfacial condition for energy can be obtained 
by integrating the interfacial condition expressed in 
equation (6) over the interfacial areas 

I n,_;(k,VT,-k,VT,)dA 
Al-a 

= s ~,(v,-w)(h,-h,).n,-,dA. (23) 
Al-5 

The system which includes equations (14), (15), 
(1 S), (22) and (23) still presents difficulties because of 
the integrals over surface areas. There exist at least 
two possible approaches to dealing with this difficulty. 
The first and most rigorous is to apply Gray’s 
decomposition to all of the terms and to develop a 
closure theory for the small quantities [3]. The second 
approach is to build models for these terms which 
are based, as much as possible, on previous related 
experimental results. It is this latter approach which 
will be taken here in part because of expedience and 
in part because of the lack of experimental results for 
use in verifying a more rigorous theory. 

MODEL FORMULATION 

In order to simplify the theory developed in the 
previous section it will first be assumed that the solid 
phase is at the melting temperature. This is not an 
unreasonable approach for several of the applications 
mentioned in the Introduction. This results in the 
elimination of equation (18). In equation (22) the 
integral term on the left side of the equation represents 
an energy sink for sensible heat due to the melting 
solid entering the liquid phase at the melting tem- 
perature which is different from the liquid phase tem- 
perature. It can be modelled as 

p,(t’,- w)c,,T,.n,_,dA = -rizc,,T, (24) 

where ri? is the rate of melting per unit volume and T,,, 
is the melting temperture. 

The last term on the left hand side of equation (22) 
is the dispersive transport. This term will be modelled 
through the inclusion of a dispersive contribution to 
the diffusion term in the model equation. The first 
integral term on the right hand side of equation (22) 
represents the effect of the interfacial geometry on 



832 0. A. PLUMB 

conduction through the liquid phase. This term is 
traditionally lumped into the first term on the right 
hand side of the equation by using an effective con- 
ductivity. This is a logical approach since it is the 
combination of both conduction terms that is mea- 
sured experimentally to determine the effective con- 
ductivity for a fluid saturated porous medium. 

The final integral term represents the heat transfer 

by conduction across the solid-liquid interface. This 
term can be modelled through the introduction of an 

x 
f 

empirical heat transfer coefficient 
-- 

-,(<T,)-- Td. (25) 
1 

v s 
VT,*n,_,dA = -hA,_ 

Al-, 

The energy interfacial condition (equation (23)) states FIG. 2. One dimensional convective melting of a packed bed. 

that the latent heat required to melt the solid at the 
rate ti must be equal to the heat conduction from 

the liquid to the solid phase when the solid phase is 
at the entrance to the packed bed as illustrated in Fig. 

uniformly at the melting temperature, thus 
2. The characteristic length L can be selected in a 
variety of ways depending on whether the problem is 

tih,, = hA,_,((T,-T,,,). (26) convection or diffusion dominated. For the sake of 

The model system of equations can now be written 
this study L has been selected to be a&,,, resulting in 
fixing the scaled Peclet number at unity. The dimen- 

Solid phase continuity : sionless model equations can now be written 

&& ti 
8; +p,=0 (27) (33) 

Liquid phase continuity : 

%J, 2 

(35) 
Liquid phase energy equation : 

Energy jump condition : 

tih,, = hA,,(T,- T,) (30) 

where the brackets denoting volume averaged quan- 
tities have been dropped for the sake of simplicity. 
Making use of the liquid phase continuity equation 
results in a further simplification to the liquid phase 
energy equation 

The above model equations can be non-dimen- 
sionalized using the following scaling 

where CI, is the initial effective liquid phase diffusivity 
and v,, and T,, are the liquid velocity and temperature 

M= H.R*St*H. (36) 

The parameters appearing in the above set of equa- 

tions are defined as follows : 

L!I,,L 
PC,,, = y- 

R = !!! 
PS 

H = L’hA,, 
k e4, 

(‘p, ( T,,, - Trill ) 

St =pmhm-mm I, 

The boundary and initial conditions applied 
study are 

0=1, $,=&,,, $,=+.,, att*=O 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

in this 
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z):= 1, f?=l atx*=O 

e=q atx*-+co. (44) 

Before the system consisting of equations (33)-(36) 
and (44) can be solved the transport properties h, ken, 
and D,, must be defined and a model which couples 
the surface area per unit volume, A,,, to the porosity 
or melting rate must be developed. 

The effective thermal conductivity will be modelled 
using the geometric mean which is in good agreement 
with the available experimental data for k,/k, < 10 [4] 

kcR = k;pI k”s b . (45) 

Following the recommendation of Wakao and Kaguei 
[5] the dispersion coefficient and the convective heat 
transfer coefficient are computed from 

(46) 

Nug, = 2+l.1Reip6 Pr”’ (47) 

where the Peclet and Reynolds numbers are based on 
the particle diameter and the properties are liquid 
properties. 

Equations (46) and (47) add the requirement that 
the particle diameter Dp be known as part of the 
required relationship between surface area and 
porosity or melting rate. The end result is a ‘geometric’ 
melting model. There are two possible simple models 
which could be developed. The first is a constant 
porosity model. In this case the particles making up 
the packed bed would be assumed to retain their 
sphericity as they melt and constantly repack resulting 
in a changing volume for the bed. In this case the 
porosity would remain constant. It is noted that for 
this model the permeability, which is proportional to 
particle diameter squared, would approach zero as the 
particles melt, eventually resulting in a plugged bed. 
This coupled with the repacking requirement leads 
one to believe that a constant porosity model may be 
unrealistic. 

The second possible melting model is a constant 
volume model In this case the porosity increases dur- 
ing melting, however, the total volume remains con- 
stant except at the entrance where the solid is completely 
melted. If one forces the particles to remain spherical 
then the bed is no longer ‘packed’ once melting begins. 
Thus, this model is unrealistic unless the melting is 
assumed to be nonuniform on the individual spheres 
resulting in a geometry like that sketched in Fig. 3. In 
this case the precise applicability of equations (46) 
and (47) could be questioned. In all likelihood, the 
actual melting geometry might be somewhere in 
between the constant volume and the constant 
porosity models. In this paper the constant volume 
model will be pursued because, at least from the intui- 
tive standpoint, it seems to be the most realistic. 

In order to compute the surface area per unit vol- 
ume the initial packing of the bed will be assumed to 
be body centered cubic resulting in 

Melting Zone 

FIG. 3. Sketch of the microscopic geometry consistent with 
the constant volume melting model. 

A,, = 
1671 

and 4, = 0.68. (48) 

Despite the fact that the particles cannot remain 
spherical in a constant volume process it will be 
assumed that the relationship given by equation (48) 
between surface area and ‘effective’ particle diameter 
continues to be applicable during melting. 

Effective particle diameter can be related to the 
melting rate again through the assumption of body 
centered cubic packing since the number of particles 
per unit volume is given by 

2 
N= (49) 

The relationship between the particle size and the 
dimensionless melting rate can now be written 

dD; 
~ = - 3J(4/3) 3 MD;. 
dt* 

This result is utilized to predict the local effective 
particle diameter which in turn is used in predicting 
the local dispersion coefficient and convective heat 
transfer coefficient as given by equations (46) and 

(47). 
The model developed above has been solved 

numerically using an implicit method. The equations 
were discretized using the power law differencing 
scheme as described by Raithby and Schneider [6]. 
Calculations were completed for two materials hav- 
ing vastly different properties-ne having the proper- 
ties of water and another having the properties of 
aluminum. The thermophysical properties utilized 
in the calculations are listed in Table 1. 

The grid size and time step necessary to achieve 
satisfactory results were dependent on the magnitude 
of the particle Reynolds number. For each case several 
numerical calculations were completed while suc- 
cessively decreasing the grid size and time step. It was 
judged that the grid size and time step were sufficiently 
small when the thickness of the melt zone became 
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Table 1. Thermophysical properties 

~~]kgm~-‘l P,tksm-‘I ~~Wsm~‘l Pi- k, W m ‘K ‘1 k,[Wm 'K '1 c,,, [J kg ’ K ‘1 h,, [kJ kg ‘1 

Water 1000 920 1422x IO ” IO 0.57 1.9 4180 333 

Aluminum 2370 2700 28x10 ’ 0.03 104 213 1084 400 

independent of these two parameters. The melt zone is 
defined as the region over which the solid fraction 
varied from zero to the initial solid fraction of 0.68. 

DISCUSSION OF RESULTS 

All of the results presented are for an initial particle 
diameter of 1 mm. Aside from the different ther- 

mophysical properties, the effect of the inlet velocity 
or particle Reynolds number and the Stefan number 
were examined. Typical results for water (Pr = 10) 

with a Stefan number of 0.1, and a particle Reynolds 
number of 0.1 are shown in Fig. 4. For this case the 
heat transfer in the flow direction is dominated by 
diffusion as opposed to convection. The figure pre- 
sents dimensionless temperature and solid fraction as 

a function of distance into the bed for several times. 
Real time and dimensional distance are shown instead 

of dimensionless quantities for comparative purposes. 
The results show that in a matter of a few seconds the 
melting front begins to propagate through the packed 
bed. After an initial transient period the model indi- 
cates a constant propagation velocity. In this case the 

melting front is propagating at approximately 
1.3 x 10m4m SK’. 

Results for one order of magnitude increase in 
velocity are shown in Fig. 5 for the same properties. 
In this case the front begins to propagate into the 
bed in less than 15 s. The effect of the increase in 

convective transport of heat into the bed as opposed 
to diffusive transport can be seen in the thicker melting 
zone. That is, the region over which the solid fraction 
changes from zero to the initial solid fraction 

(&, = 0.68) is wider. The same trend is observed when 
the velocity is increased by another order of mag- 
nitude as illustrated in Fig. 6 for the case of a particle 
Reynolds number (based on the inlet velocity) of 10. 

.5 1.0 1.5 
Axial Location, cm 

The temperature distribution in the melt zone shows 
little effect of axial thermal dispersion, even at higher 
particle Reynolds number because of the small axial 
length scale associated with the melt zone. 

FIG. 4. Dimensionless temperature and solid fraction in the The effect of reducing the Stefan number by a factor 

melting zone (water, Re = 0.10, Ste = 0.10). of 2 to 0.05 is illustrated in Fig. 7 for a case otherwise 

0 
0 .5 1.0 1.5 2.0 

Axial Location, cm 

FIG. 5. Dimensionless temperature and solid fraction in the 
melting zone (water. Re = I, Ste = 0.10). 

Axial Location, cm 

FIG. 6. Dimensionless temperature and solid fraction in the 
melting zone (water, Re = 10. Ste = 0.10). 

Axial Location, cm 

FIG. 7. Dimensionless temperature and solid fraction in the 
melting zone (water. Re = I, Ste = 0.05). 
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1.0 2.0 3.0 4.0 5.0 

Axial Location, cm 

FIG. 8. Dimensionless temperature and solid fraction in the 
melting zone (aluminum, Re = 1, Sfe = 0.15). 

0.25 0.5 0.75 1.0 

Axial Location, cm 

FIG. 9. Dimensionless temperature and solid fraction in the 
melting zone (aluminum, Re = 10, Ste = 0.15). 

identical to the case shown in Fig. 5 (an inlet particle 
Reynolds number of 1.0). The two sets of results are 
nearly identical except for the melting process being 
slowed by a factor of two since the melting rate is 
linearly dependent upon the Stefan number as might 
be expected for small Stefan number. 

Results for a low Prandtl number material having 
properties similar to aluminum are shown in Figs. 8- 
10. In this case the Stefan number is 0.15 and the 
Prandtl number is 0.03. Figure 8 illustrates that the 
process is strongly conduction dominated for the case 
of an inlet velocity that results in a particle Reynolds 

1.01 . . . --..:~-..- . .._... 1 

Axial Location, cm 
102 

Re 

FIG. 10. Dimensionless temperature and solid fraction in the FIG. 11. Predicted and steady state melt zone propagation 
melting zone (aluminum. Re = 100. SIC = 0.15). velocity as a function of particle Reynolds number. 

number of 1 .O. The temperature distribution is nearly 
linear, however, the melting zone is the same order of 
magnitude as that for the high Prandtl number case 
(water). As the inlet velocity is increased the increased 
dominance of the effects of convection can be seen in 
Figs. 9 and 10. In Fig. 9, for a particle Reynolds 
number of 10, there is still some conduction to the 
upstream boundary whereas in Fig. 10 (Re, = 100) 
the heat transfer becomes dominated by convection 
and a nearly constant melt propagation velocity of 
1.36 x lo- 2 m SK’ results. The effect of Stefan number 
is the same as that observed for water in that a 
decrease by a factor of two results in a similar decrease 
in the melting rate. 

The quantity of primary interest from the practical 
standpoint is the melting rate under steady state con- 
ditions. Under steady conditions a front propagation 
velocity can be estimated using global energy and 
mass balances on the melting zone. The end result is 
that the melting zone will propagate at a velocity given 

by 

R Ste vlo 

%ront = &+RSte' (51) 

This result can be utilized to check the numerical 
results. However, it must be noted that equation (51) 
does not account for heat transfer by conduction 
upstream of the melt zone. Thus, the comparison 
between equation (5 1) and the numerical results must 
be expected to be better for water than for aluminum 
because of the much lower thermal conductivity of 
water. The comparison should also be better under 
conditions where convection is dominant. Com- 
parison between the theoretical and experimental 
propagation velocities is shown in Fig. 11 as a function 
of particle Reynolds number. 

The melt zone thickness will increase as the liquid 
velocity is increased. Figure 12 shows the melt zone 
thickness as a function of particle Peclet number. 
These results are independent of the Stefan number 
but depend on the Prandtl number. Higher Prandtl 
numbers lead to a thicker melt zone. As the heat 
transfer becomes diffusion dominated at low Peclet 
number the zone thickness becomes independent of 

l water 
0 Aluminum 
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0 Water 

2 0 Aluminum 

f 
10.3 I ,111 I I1111 I 

100 10’ 102 103 

Pe 

FIG. 12. Melting zone thickness (dimensional) as a function 
of particle Peclet number. 

the Peclet number. In the convection dominated 

regime (Pe > 10) the melt zone thickness increases 
with the Peclet number to a power slightly greater 
than 0.4 for water. 

CONCLUSIONS 

The volume averaged equations for melting of a 
packed bed have been developed. These equations are 
modelled to predict melting rates for a single sub- 
stance which are applicable to either the case of liquid 
entering a stagnant packed bed or a cloud of particles 

falling (or rising in the case of ice and water) through 
a stagnant liquid. 

The results demonstrate that for systems dominated 
by convection (large Peclet number based on particle 
diameter) the velocity of the melting front can be 

predicted using a simple steady state solution. In this 

case the front propagation velocity depends only on 
the Stefan number, the liquid/solid density ratio, the 
fluid velocity and the solid fraction. For low Peclet 

numbers the front propagation rate falls below the 
steady state solution. 

The thickness of the melting zone increases as a 

power law of the Peclet number and is independent of 
the Stefan number for systems which are dominated 
by convection. The melt zone thickness is greater for 

larger Prandtl numbers. 

AcX-no~le~~emmtshis material is based upon work sup- 
ported by the National Science Foundation under Grant 
No. CTS-9016104. The author would like to express his 
appreciation to an anonymous reviewer who pointed out an 
error in the theoretical formulation. 
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